ПРАКТИЧЕСКАЯ КРИПТОГРАФИЯ АЛГОРИТМЫ И ИХ ПРОГРАММИРОВАНИЕ

       

Использование однократного гаммирования


С точки зрения теории криптоанализа метод шифрования однократной случайной равновероятной гаммой той же длины, что и открытый текст, является невскрываемым (далее для краткости авторы будут употреблять термин "однократное гаммирование", держа в уме все вышесказанное). Обоснование, которое привел Шеннон, основываясь на введенном им же понятии информации, не дает возможности усомниться в этом - из-за равных априорных вероятностей криптоаналитик не может сказать о дешифровке, верна она или нет. Кроме того, даже раскрыв часть сообщения, дешифровщик не сможет хоть сколько-нибудь поправить положение - информация о вскрытом участке гаммы не дает информации об остальных ее частях.

Логично было бы предположить, что для организации канала конфиденциальной связи в открытых сетях следовало бы воспользоваться именно схемой шифрования однократного гаммирования. Ее преимущества вроде бы очевидны. Есть, правда, один весомый недостаток, который сразу бросается в глаза, - это необходимость иметь огромные объемы данных, которые можно было бы использовать в качестве гаммы. Для этих целей обычно пользуются датчиками настоящих случайных чисел (в западной литературе аналогичный термин носит название True Random Number Generator или TRNG). Это уже аппаратные устройства, которые по запросу выдают набор случайных чисел, генерируя их с помощью очень большого количества физических параметров окружающей среды. Статистические характеристики таких наборов весьма близки к характеристикам "белого шума", что означает равновероятное появление каждого следующего числа в наборе. А это, в свою очередь, означает для нас действительно равновероятную гамму .

К сожалению, для того чтобы организовать конфиденциальный канал передачи данных, потребуется записать довольно большое количество этих данных и обменяться ими по секретному каналу . Уже одно это условие делает однократное гаммирование во многих случаях неприемлемым. В самом деле, зачем передавать что-то по открытому незащищенному каналу, когда есть возможность передать все это по секретному защищенному? И хотя на простой вопрос, является ли метод использования однократной случайной равновероятной гаммы стойким к взлому, существует положительный ответ, его использование может оказаться попросту невозможным.

Да и к тому же метод однократного гаммирования криптостоек только в определенных, можно даже сказать, тепличных условиях. Что же касается общего случая, то все не так просто.

Показать слабости шифра однократного гаммирования можно, говоря наукообразно, с помощью примера или, что называется, "на пальцах". Представим следующую ситуацию.

Допустим, в тайной деловой переписке используется метод однократного наложения гаммы на открытый текст. Напомним, что "наложение" гаммы не что иное, как сложение ее элементов с элементами открытого текста по некоторому фиксированному модулю. Значение модуля представляет собой известную часть алгоритма шифрования.

Чтобы дальнейшие рассуждения были как можно более понятны, рассмотрим следующее свойство шифротекста. Предположим, что мы знаем часть гаммы, которая была использована для зашифрования текста "Приветствую, мой ненаглядный сосед!" в формате ASCII, кодировка WIN-1251 (см. листинг 7.1).

П р и в е т с т в у ю , _ м о й CF F0 E8 E2 E5 F2 F1 F2 E2 F3 FE 2C 20 EC EE E9 _ н е н а г л я д н ы й _ с о с 20 ED E5 ED E0 E3 EB FF E4 ED FB E9 20 F1 EE F1 е д ! E5 E4 21



Содержание раздела