Алгоритмы шифрования

       

Криптология с открытым ключом


Борис Оболикшто

   Казалось бы, толчок, данный Шенноном, должен был вызвать обвал результатов в научной криптологии. Но этого не произошло. Только бурное развитие телекоммуникаций, удаленного доступа к ЭВМ при несовершенстве существовавших криптосистем с секретным ключом вызвало к жизни следующий и, пожалуй, самый интересный этап криптологии, отсчет которому ведут от появившейся в ноябре 1976 года статьи Уитфилда Диффи и Марти E. Хеллмана "Новые направления в криптографии". Сам У. Диффи датирует получение опубликованных в ноябре 1976 года результатов маем того же года; таким образом, у нас есть повод с мая до ноября отмечать ДВАДЦАТИЛЕТНИЙ ЮБИЛЕЙ криптологии с открытым ключом.
   Одна из проблем, которая осталась неразрешенной в традиционной криптографии, - распространение секретных ключей. Идея передавать "секретный" ключ по открытому каналу кажется на первый взгляд безумной, но если, отказавшись от совершенной секретности, ограничиться практической стойкостью, то можно придумать способ обмена ключами.
   Первым из получивших распространение способов оказался экспоненциальный ключевой обмен. Суть его в следующем:
- Алиса и Боб (привлечение в качестве сторон не абстрактных "А" и "Б", а симпатичных Алисы и Боба, стало традицией в этой области криптологии) выбирают случайные числа Хa и Хb соответственно.
- Алиса передает Бобу Ya =aXa (mod q), а Боб Алисе - Yb =aXb (mod q).
   Здесь a - так называемый примитивный элемент конечного поля Галуа GF (q), замечательное для нас свойство которого заключается в том, что его степени дают все ненулевые значения элементов поля. В качестве секретного ключа используется значение

Ya =aXaXb (mod q),

которое Алиса получает возведением переданного Бобом числа в степень Xa, известную только ей, а Боб - полученного от Алисы числа в известную только ему степень Хb. Криптоаналитик вынужден вычислять логарифм по крайней мере одного из передаваемых чисел.
   Устойчивость экспоненциального ключевого обмена базируется на так называемой односторонности функции возведения в степень: вычислительная сложность получения Ya из Xa при q длиной 1000 битов - порядка 2000 умножений 1000 битовых чисел, в то время как обратная операция потребует примерно 1030 операций. ОДНОСТОРОННИЕ функции, обладающие подобной асимметрией вычислительной сложности прямой и обратной задачи, играют ведущую роль в криптографии с открытым ключом.
   Еще более интересна односторонняя функция с потайным ходом ("лазейкой"). Идея состоит в том, чтобы построить функцию, обратить которую можно только зная некоторую "лазейку" - секретный ключ. Тогда параметры функции служат открытым ключом, который Алиса может передать по незащищенному каналу Бобу; Боб, используя полученный открытый ключ, выполняет шифрование (вычисление прямой функции) и передает по тому же каналу результат Алисе; Алиса, зная "лазейку" (секретный ключ), легко вычисляет обратную функцию, тогда как криптоаналитик, не зная секретного ключа, обречен на решение намного более сложной задачи.
   Такую функцию в 1976 году удалось построить Р. Мерклю (R.C. Merkle) на основе задачи об укладке ранца. Сама по себе задача - односторонняя: зная подмножество грузов, уложенных в ранец, легко подсчитать суммарный вес, но зная вес, непросто определить подмножество грузов. В нашем случае использовался одномерный вариант задачи: вектор грузов и сумма компонентов его подвекторов. Встроив "лазейку", удалось получить так называемую ранцевую систему Меркля-Хелмана. Первая криптосистема с открытым ключом заработала, и Меркль предложил $100 тому, кто сможет ее раскрыть.
   Награда досталась А. Шамиру (Adi Shamir) шесть лет спустя после публикации им в марте 1982 года сообщения о раскрытии ранцевой системы Меркля-Хелмана с одной итерацией. На конференции Crypto'82 Л. Адлман (L. Adleman) продемонстрировал на компьютере Apple II раскрытие ранцевой системы. Заметим, что Шамир не построил способ обращения задачи - получения значения секретного ключа, он сумел построить ключ, не обязательно равный секретному, но позволяющий раскрыть шифр. В этом таится одна из наибольших опасностей для криптографии с открытым ключом: нет строгого доказательства односторонности используемых алгоритмов, т. е. никто не гарантирован от возможности нахождения способа дешифрования, вероятно, и не требующего решения обратной задачи, высокая сложность которой позволяет надеяться на практическую стойкость шифра. Хорошо, если раскрытие той или иной системы проведет ученый с мировым именем (в 1982 году А. Шамир уже был известен как один из авторов системы RSA). А если это удастся нечестолюбивому хакеру?
   В заключение драмы о ранцевой системе упомянем еще об одном пари, которое Меркль заключил с желающими раскрыть усовершенствованную систему с многими итерациями на сумму $1000. И эту сумму пришлось заплатить. Ее получил Э. Брикелл, раскрыв летом 1984 года систему с сорока итерациями и со ста посылками за час работы Cray-1.
   Значительно более удачна на сегодняшний день судьба системы RSA, названной так по первым буквам фамилий ее авторов Р. Ривеста (Ronald Rivest) и уже знакомых нам А. Шамира и Л. Адлмана. Кстати, именно первому систематическому изложению алгоритма RSA обязаны своим появлением на свет Алиса и Боб. С их "помощью" авторы в 1977 году описали систему на основе односторонних свойств функции разложения на простые множители (умножать просто, а разлагать - нет).

Е.Спаффорд Б.Доул С.Лодин
<
        Развитие криптологии с открытым ключом позволило криптологическим системам довольно быстро найти широкое коммерческое применение. Но интенсивное использование криптографии не обходится без "накладок". Время от времени мы узнаем о неприятностях в той или иной системе защиты. Последним нашумевшим в мире происшествием стал взлом системы Kerberos. Система эта, разработанная в середине 80-х годов, довольно популярна в мире, и ее взлом вызвал немалое беспокойство пользователей.
   В случае с Kerberos неприятность заключалась не в алгоритме шифрования, а в способе получения случайных чисел, т. е. в методе реализации алгоритма. Когда в октябре прошлого года пришло известие о просчетах в системе генерации случайных чисел в программных продуктах Netscape, обнаруженных студентами университета Беркли, Стивен Лодин обнаружил подобную неприятность в Kerberos. Совместно с Брайаном Доулом он сумел найти брешь и в системе Kerberos. Действующие лица этой истории - не дилетанты. Выпускники университета Purdue (штат Иллинойс) сотрудничали с лабораторией COAST (Computer Operations, Audit, and Security Technology), профессионально занятой вопросами компьютерной безопасности и руководимой проф. Спаффордом, который является также основателем PCERT (Purdue Computer Emergency Response Team) - университетского отряда "быстрого реагирования" на компьютерные ЧП. PCERT, в свою очередь, член аналогичной международной организации FIRST (Forum of Incident Response Teams). Как видим, мину нашли саперы, а это внушает надежду, что пользователи криптосистем не останутся беззащитными даже в случае выявления недоработок.
   Характерно содержание первого обращения к прессе (от 16 февраля 1996 г.), которое от лица первооткрывателей сделал проф. Спаффорд. В нем, наряду с информацией о ненадежности системы паролей и возможностях ее взлома в течение пяти минут, говорится о задержке дальнейшего распространения технической информации до тех пор, пока разработчиками не будут внесены коррективы препятствующие несанкционированному доступу.
   Не обошли ошибки и наши пенаты. К счастью, есть в наших краях профессионалы, способные своевременно найти и показать слабые места системы защиты. Еще месяц не прошел с тех пор, как специалистами киевского ООО "Финтроник" П.В. Лесковым и В.В. Татьяниным продемонстрированы недостатки одной из популярных банковских систем защиты: время вскрытия шифротекстов составило менее 6 минут, а время, необходимое для неконтролируемого нарушения целостности документа (обход системы аутентификации), - менее 5 минут. И здесь нам, читатель, также придется подождать, пока разработчики внесут необходимые изменения. А уж затем мы сможем рассказать подробнее о том, как и что было сделано.


Содержание раздела